Tag Archives: blue plaque

Catalyst Science Discovery Centre and Museum, Widnes

By Bill Griffith and John Hudson

Lablanc Process
Lablanc Process from the historical gallery "Birth of an Industry" at Catalyst. Image courtesy of Catalyst Science Discovery Centre.

The Catalyst Science Discovery Centre is the only science and discovery centre in the country devoted to chemistry. It was opened on its current site in 1986 and is run by a charitable Trust. The building was originally built as offices for John Hutchinson’s alkali works (probably in 1862). After the absorption of Hutchinson’s by the United Alkali Company in 1891 the building was leased in 1893 (and then subsequently sold in 1898) to Barnett Dutton, Auctioneers of Widnes, later becoming part of the Gossage soap works, founded by William Gossage (1799-1877) in 1908. Finally, with the rest of the Gossage estate, it was acquired by Imperial Chemical Industries, Ltd., on 5th October, 1948, and adapted for use as laboratories. After it closed in 1961 the Gossage Building was used by several companies including Hughes and Treleaven, who were the last owner before Catalyst was established.

There are five floors. The ground floor contains a reasonably priced, comfortable café, and a large exhibition area of mainly interactive exhibits on a wide range of topics and materials, e.g. soaps, dyestuffs, autocatalysts, photovoltaic cells, batteries etc. There is a Periodic Table near the entrance where there is still space to sponsor your own element. On the first floor there are two lecture theatres and a working laboratory where no less than 900 presentations of chemical experiments were conducted last year. Various chemical processes are covered here too in the well-lit and well-arranged galleries, e.g. on the Leblanc, Solvay, Castner-Kellner and other processes; materials such as penicillin, DDT, polythene, halothane (discovered in 1951 in the nearby ICI Widnes lab.) etc. are shown. On the second floor there are exhibits on plastics. Don’t miss the top floor called the Observatory: this glass-covered structure gives magnificent, panoramic 3600 views of the surrounding Merseyside area, most of which had housed some of the world’s largest chemical industry (ICI and other firms); some are still there of course, much has gone.

Catalyst was awarded a Royal Society of Chemistry blue plaque in October 2011 to commemorate the 1951 synthesis and subsequent commercial development and use of halothane, the first inhalation anaesthetic designed by chemists. Halothane was nominated for a plaque by the RSC Liverpool Local Section, and the Historical Group was represented at the presentation by Bill Griffith and John Hudson. The ICI General Chemicals Widnes Research Laboratory, where the synthesis was achieved, has since been demolished, so the plaque was placed on the nearby Catalyst Centre, which occupies the site of the former ICI Tower laboratory. Catalyst now has a permanent display relating to halothane, and is also the repository of the ICI General Chemical Archive which contains the original documentation relating to halothane. One particular highlight is a the series of chemical demonstrations given to children belonging to the very popular Catalyst Saturday Science Club and their parents.

Historical gallery "Birth of an Industry" at Catalyst.
Historical gallery "Birth of an Industry" at Catalyst. Image courtesy of Catalyst Science Discovery Centre.

The proceedings commenced with a welcome from Dr Jenny Clucas, a Trustee of Catalyst. She outlined the role of Catalyst, which is the only science discovery centre in the country devoted to chemistry, as well as being a museum of the chemical industry. There then followed a presentation by Professor Colin Suckling, son of Dr Charles Suckling who led the team which synthesised and developed halothane. Several other members of the family were present, but Professor Suckling reported that sadly his father was too infirm to be at the event but was extremely proud that he and his team were being honoured in this way.

Professor Suckling briefly outlined the history of anaesthetics. He referred to the fact that the first attempt to establish the scientific basis of anaesthesia had been made by Dr John Snow in the nineteenth century, and that in 2008 the RSC had erected a Landmark Plaque to Snow to commemorate his demonstration of the mode of transmission of cholera. The halothane story commenced when Dr John Ferguson, ICI Head of Research, suggested to Charles Suckling that he investigate a range of fluorinated hydrocarbons as possible anaesthetic agents. The most widely used compounds at the time were chloroform, diethyl ether, nitrous oxide, and cyclopropane. The ICI research resulted in the compound 2-bromo-2-chloro-1,1,1-trifluoroethane, which was found to be far superior to the anaesthetics then in use. It was safer, non-inflammable, and had a relatively low toxicity. Known as halothane, and trademarked as Fluothane, it was used worldwide in millions of operations between 1956 and the 1990s. It still finds some application in the third world, although it has largely been superseded by halogenated ethers such as enfluane and isofluane.

Historical gallery "Birth of an Industry" at Catalyst
Historical gallery "Birth of an Industry" at Catalyst. Image courtesy of Catalyst Science Discovery Centre.

Professor Paul O’Brien, Vice-President of the RSC and Professor of Inorganic Materials at Manchester University, then spoke about the Landmark Plaque scheme. He pointed out that the scheme helps to bring to the attention of the general public the role that chemistry has played, and continues to play, in advancing human wellbeing. The RSC normally erects three or four plaques per year, but a larger number will be unveiled in 2011, the International Year of Chemistry. Halothane was a perfect subject for a plaque, and Catalyst was the ideal location for it. He then presented the plaque to Jenny Clucas. The wording on the plaque reads:

ICI General Chemicals Widnes Research Laboratory in recognition of the outstanding scientific contribution made by Charles Suckling and others, close to this site in 1951, in the synthesis and subsequent commercial development of halothane, the word’s first synthetic inhalation anaesthetic. 22 October 2011.

A visit to Catalyst is highly recommended.

Halothane chemical plaque
Professor Colin Suckling (left) and Professor Paul O’Brien presenting the Chemical Landmark Plaque for Halothane, Catalyst Science Discovery Centre and Museum, Widnes to Dr Jenny Clucas on 22 October 2011.

Further information

Address: The Catalyst Science Discovery Centre (or ‘Catalyst’ as it is simply called on the building) is on Mersey Road, Widnes, Cheshire, WA8 0DF

Website: http://www.catalyst.org.uk

Opening Hours: 1000-1700 on Tuesdays to Fridays and from 1000-1700 on Saturdays and Sundays; closed on Mondays (except during local school holidays).

There is an admission charge.

Rutherford’s Nuclear Atom, Manchester

By Alan Dronsfield

Landmark Plaque being presented
The Landmark Plaque was presented to Prof Rod Coombs, Deputy Vice-Chancellor of Manchester University by RSC President Prof David Phillips. Photograph by Diana Leitch.

Chemical Landmark plaque to mark the centenary of Rutherford’s nuclear atom

The presentation took place in the Conference Centre, University Place, Manchester University on Monday 8th August 2011 as the opening part of the Rutherford Centennial Conference organised by the Institute of Physics to celebrate the centenary of the publication of Rutherford’s paper describing the discovery of the atomic nucleus. The conference marked one hundred years of the atomic nucleus by addressing the wide range of current topics characterising modern nuclear physics, including nuclear structure and astrophysics, hadron structure and spectroscopy, weak interactions and relativistic heavy-ion collisions. The historical aspects of his discovery were dealt with as part of the RSC’s Landmark event.

The conference itself was opened by Mr Derek Leask, High Commissioner for New Zealand, an appropriate choice given that Ernest Rutherford was a New Zealander by birth and lived there until he took up his postgraduate studentship in the Cavendish Laboratory, Cambridge, in 1895.

Jeff Hughes of Manchester University gave an address outlining Rutherford’s life and scientific achievements. This was an amplification of his talk which he gave to our Group in March 2011 as part of our Mme Curie conference. Rutherford was appointed Macdonald Professor of Physics at McGill University, Montreal, Canada in 1898 where he quickly became an authority on the new science of radioactivity. In 1907 he moved to Manchester University and in 1908 he was awarded the Nobel Prize in Chemistry for his McGill work on radioactive decay. As he regarded himself primarily as a physicist, he remarked that this was the greatest transformation in his career! At Manchester, Rutherford and co-worker Hans Geiger, together with their student Ernest Marsden, used α-particles to bombard gold foil. They observed an unexpected back-scattering of the particles and this led Rutherford to propose his theory of the nuclear atom. The results upon which his theory was based were, in fact, published in 1909 but it was at a meeting of the Manchester Literary and Philosophical Society on 7th March 1911 that his conclusions as to the nature of the atom with its nuclear “core” were given a public airing. The hypothesis was given a mathematical interpretation by Niels Bohr in 1913 into its now familiar form.

The second speaker was John Schiffer, emeritus professor at the University of Chicago who spoke on the development of nuclear physics post-Rutherford. This proved an ambitious aim for what was a lecture of less than an hour’s duration, but John managed valiantly and not only drew attention to the other landmarks that map out this field but also found time to speculate which of the current researches might be identified as the most promising ones.

The Landmark Plaque was presented to Prof Rod Coombs, Deputy Vice-Chancellor of Manchester University by RSC President Prof David Phillips. The text on the plaque reads:

Ernest Rutherford on the occasion of the 100th anniversary of the discovery of the atomic nucleus by Ernest Rutherford, a Nobel Laureate in Chemistry and pioneer in nuclear physics, at the University of Manchester.

Prof Sean Freeman, of the Nuclear Physics Research Group School at the University of Manchester said: “It is a real pleasure for the Royal Society of Chemistry to be involved in the celebrations of the centenary of Rutherford’s discovery of the atomic nucleus.

“His genius uncovered the structure of the atom and effectively initiated the whole area of nuclear physics. It is particularly nice for the RSC to join us in the opening ceremony of the conference as Rutherford won the Nobel Prize for Chemistry ‘for his investigations into the disintegration of the elements and the chemistry of radioactive substances’.

The University is particularly proud to receive a Chemical Landmark plaque to mark this anniversary”.

English Heritage plaque to Sir William Ramsay, London

By Bill Griffith

William Ramsay blue plaque
Blue plaque at 12 Arundel Gardens, Notting Hill, London, W11, where Sir William Ramsay (1852-1916) lived, from 1887 to 1902.

On Wednesday 9 February 2011, an English Heritage plaque was unveiled at 12 Arundel Gardens, Notting Hill, London, W11, where Sir William Ramsay (1852-1916) lived, from 1887 to 1902. From this pleasant terraced house he would cycle to University College (UCL) to work.

The plaque was unveiled at 14.00 by Baroness Kay Andrews, Chair of English Heritage, who spoke briefly about Ramsay; Dr Celina Scott, vice-Chair, described the English Heritage plaque scheme, and Prof. Alwyn Davies, FRS talked about Ramsay’s career and his celebrated cycle rides from Arundel Gardens to UCL. He and Baroness Andrews then unveiled the plaque.

Twelve cyclists, led by Dr Andrea Sella (a Notting Hill resident and UCL lecturer who made the original application to English Heritage) then cycled to UCL – it took them 45 minutes on the route used by Ramsay – who wrote to a friend that the journey took him 18 minutes – Andrea pointed out that in Ramsay’s day there were no traffic lights or one-way systems (though the streets were cobbled and pneumatic tyres for bicycles not then been invented). The author of this piece was offered a Boris bike to do the trip, but took the Underground instead.

Caricature of Sir William Ramsay
Caricature of Sir William Ramsay (October 2, 1852 – July 23, 1916), by Leslie Ward in Vanity Fair, 2 December 1902. Image available in public domain via Wikimedia Commons.

From 15.30 at UCL, in the Ramsay Lecture Theatre, Dr Fred Parrett, Chair of the SCI London Group and Andrea Sella introduced the afternoon’s speakers. Prof. Alwyn Davies, in Sir William Ramsay – the Man, the Myth and the Bicycle, spoke about Ramsay’s remarkable career. At UCL, where he was Professor of Chemistry from 1880, he isolated, with Lord Rayleigh, the noble gases neon, argon, krypton and xenon, and was one of those who discovered helium. In 1904 he was awarded the Nobel Prize in Chemistry for his noble gas work, the first British scientist to win a Nobel Prize (cf. RSCHG Newsletter February 2005 for an account of the unveiling of an RSC Landmark plaque at UCL commemorating the centenary of that Nobel Prize on 10 December 2004).

Dr Neil Todd of the University of Manchester then spoke on Ramsay, Rutherford and Radium. Finally, Professor Bill Brock gave a fascinating talk on Victorian Scientists Living North of the Park: these included A.W. Hofmann (Fitzroy Square), Edward Turner (Gower Street), Alexander Williamson (Euston Road), William Wollaston (Great Portland Street), Sir Benjamin Thompson (Count Rumford) in Cromwell Road and Sir William Crookes (Mornington Crescent, then Kensington Park Gardens).

The meeting ended in the Nyholm Room with drinks and, finally and appropriately, haggis and whisky, provided after a short address by Malcolm Grant, the Provost of UCL.