Life history of your PhD thesis

Joe Cain thinks far too little is done in the UK to disseminate PhD theses. Most simply are inaccessible to scholars. Not all graduates convert their work into scholarly products. Surprisingly few take even the simplest steps to distribute their finished thesis. In this article, Joe offers suggestions for what might be done to improve these problems. His key message to students is ‘take charge’.

Once the dissertation viva is over and revisions are complete, many doctoral theses have the same life history. There’s a day – a memorable day – when two copies are delivered proudly to an office somewhere in the bowels of an administration building. Forms are signed. A rubber stamp hits the page. The thesis is well and truly done.

When asked, most students don’t know what happens to their thesis – that bound physical object. Moreover, surprisingly few have no real plan for disseminating their research beyond a vague thought to ‘publish something somewhere’. It’s all too easy for dissertations, and the research contained therein, to disappear into a forgotten corner of off-site storage.

Joe Cain

Darwin events continue. In this issue Kelley Swain reports on her dissemination of her poetry on Darwin, for which she has received assistance from an Outreach and Education grant.

Also included are BSHS news items and grant reports, more reports of meetings, reviews, a reader’s contribution and the Questionnaire. Contributions to the next issue should be sent to newsletter@bshs.org.uk by 17 August 2009, with advanced notice of contributions greatly appreciated.

© SCIENCE MUSEUM/JENNIE HILLS

Fig. 1 This is a prototype display of topics associated with the theme of scientific lectures in early 19th-century London, which was created by Louise Thorn from her PhD research. A selection of relevant objects from the collections of the Science Museum were included as potential display items. Further details of the objects and images on display here can be viewed at http://www.ingenious.org.uk.
Few people plan to do nothing with their completed thesis, but busy lives and pressing demands elsewhere simply divert energy and attention. Before long, hot ideas have grown cold, and dust has settled over the project. The effort involved returning to the project becomes more than people can muster.

On the opposite end, some dissertations are transformed rapidly into professional publications. Most commonly, chapters become peer-reviewed papers. Talks appear at conferences and seminars. Whole theses sometimes are transformed into book manuscripts. Conversion along these lines is not easy, but that process can be simplified with a little tactical planning. For instance, chapters can be written with life as stand-alone articles in mind. Notes can be kept regarding additions and transformations towards a book.

Between the poles of ‘nothing’ and ‘everything’ lies something. A great many opportunities exist for disseminating thesis work without investing much additional time or effort. I’m surprised how few graduates consider sending their thesis (or e-mailing an abstract with an offer to send the whole) to established specialists in their area. Surely, every graduate will know who will be most interested in their work. Likewise, archivists and curators tell me they rarely receive theses drawing on research done with their collections. That’s a shame. Not only do archives and museums have their own pressures to demonstrate relevance to research (and we can help them here!), but they certainly will receive future researchers and reference requests focusing on the same material. Archivists and curators are experts in their own right, too, and will benefit from reading new interpretations.

Distribute the thesis-as-a-text as much as possible. Also, consider other ways to expand on the underlying research programme. Beyond articles and a book, consider other outputs — normally possible with only slight polishing and permissions. Document transcriptions might stand on their own via scholarly editing. Translations can be put into wider circulation. Interviews might become collections of oral histories and formally deposited. Studies of space and place can develop into walking tours; image collections, and exhibit catalogues. Notes covering whole archival collections might be the foundation for a finding aid or calendar of correspondence.

Internet-based outlets offer quick and inexpensive routes for dissemination. In some cases, they seem too easy, and opportunities are overlooked. It takes no effort to post a dissertation title and abstract on a personal or departmental website. This would give hits from web searches, at the very least. BSHS now manages on-line its long-standing “List of Theses,” covering dissertations in progress or completed in the UK and Republic of Ireland. Oddly, this list is perpetually out-of-date.

Its conscientious editors regularly complain about difficulties extracting information from postgraduates and departmental tutors. Of course, there’s nothing to stop individuals from contributing their own information directly. The same goes for the Isis Current Bibliography and History On-line via history.ac.uk when the thesis is completed.

More involved projects develop other types of engagement and knowledge transfer. Publications for general audiences offer important venues for reaching amateurs and enthusiasts, for example, Viewpoint, Endeavour, BBC History, Wellcome History, and Chemical Heritage. Many universities and research libraries produce magazines for alumni and ‘friends’. So do enthusiast groups ranging from military to local history, as do groups such as the Historical Association (primary and secondary educators), English Heritage, etc. Editors normally are anxious for content, and production values tend to be high. Along similar lines, some theses will include substantial revision to biographical, bibliographical, and etymological information. The Oxford Dictionary of National Biography, Oxford English Dictionary, and commercial encyclopaedia also offer outlets for new interpretations. However, graduates rarely discuss revising these as a viable writing project. The online nature of these publications now allows for easy revision. The other obvious venue for general audience writing is Wikipedia and its kin; take credit for improving these sometimes terrible — but occasionally excellent — resources.

Opportunities are increasing for collaboration with arts and educational groups. A well-stocked portfolio can add roundedness to the specialist technical writing of most academic resumes. Collaborations also open up alternative career and funding paths. Large projects need resources beyond most ex-postgraduates. However, posters and single-cabinet displays do not (see Fig. 1).

If designed to be portable and available for loan, their value increases. Display space normally can be found in every university department. But go beyond the usual suspects, too. Cultural and historical displays are common at airports, in hospitals, office lobbies, government agencies, large hotels, and shopping centres. Local libraries have display potential, as do staff areas at relevant museums, archives, and industries. These venues also might want help revising content on websites and promotional literature. No aspiring academic should underestimate the value of such projects. Neither should anyone interested in museum work, the publishing industry, or corporate life.

Small projects also can lay the foundations for larger funding opportunities, such as those on offer by the Wellcome Trust’s arts and public engagement schemes, the British Council, and most professional societies.

What does your university do with your thesis after completion?

If most graduates underplay their thesis, worse normally happens with thesis-as-a-physical-object. Many universities do rather little after acceptance. One copy will be made available for loan. Frequently, this means availability only for reference, only to those visiting the library in person, and only for those planning ahead enough to have it retrieved from storage. Because copyright law applies to theses as it applies to everything else, photocopying will be restricted to the usual single chapter or five percent, whichever is more, unless the copyright owner’s permission is obtained. Other copies of a thesis might simply be sent to archival storage, for safe keeping in perpetuity. Such behaviour doesn’t help much with dissemination.

To their credit, some universities go further. Some use corporate archival services to

Fig. 2 In 2007 as part of ‘Outreach Day’ at the Manchester 2007 conference, Melanie Keene introduced the ‘Object Stories’ session with PhD research she had conducted into historical ‘it-narratives’, or autobiographies of things.
register theses, microfilm or digitise them, then sell copies on request. These services also offer long-term off-site storage. Both commercial (for example, UMI/Proquest) and national (for example, ETHOS, formerly the British Library Theses Service) services are available. Individuals cannot submit material on their own. Graduate schools are the gatekeepers. If a university subscribes to such a service, students will be asked (or required) to license the process. In return, a small royalty is promised in the event of non-trivial sales. Students should know if their universities use such a service.

Graduate schools tend to have explicit routines for processing theses once accepted. This will include disseminating titles and abstracts to bibliographic services, such as Index to Theses (www.theses.com) and Dissertation Abstracts Online (now PQDT: ProQuest Dissertations and Theses). At the institutional level, some services will be missed (especially those the more specialised audiences), so students or departments should follow-up to cover the holes (as above).

One trend in UK universities has them managing on-line digital libraries, promoting open access (for example, UCL EpJrnts). Dissertations have become an obvious grist for these mills, and institutions are starting to encourage or require electronic deposit in conjunction with submission of paper originals. A comparable project is underway in Australasian - adt.caul.edu.au and across Europe - www.dart-europe.eu.

Who needs to act?

Dissemination ultimately is your own responsibility. It's also a golden opportunity. It's in your best interests to know how far and wide others will work on your behalf. Campaign to have that range extended. Make enquiries in your Graduate School and with your department. If not one listens, increase the volume via consultation processes, blogs, university newspapers, and campaigning.

Take an active role in dissemination, too. If nothing else, post your title and abstract on easy-to-find, searchable websites. Consider deposits in digital libraries and paper archives. Update information in bibliographic services. Actively share your work. Of course, don't stop after distributing copies of your thesis. Write. Then write more. Then create complementary projects. The wider you search, the more the opportunities.

Joe Cain,
University College London
BSHS Communications Co-ordination Committee
j.cain@ucl.ac.uk

BSHS News

Cambridge Journals Online: Special Access for Members of BSHS

Every member of the BSHS can now easily get privileged use of Cambridge Journals Online. This special access gives members access to all articles since 1997 as well as forthcoming articles; comprehensive search functions; customised accounts to save articles or request citation alerts; and RSS feeds and advanced notice of future issues. Activate membership subscription by visiting Cambridge Journals Online at www.journals.cambridge.org.

Register with a username and password of your choice. Then go to the Activate Society Subscriptions page: the BSHS ID number is 1448100. Then enter your own membership number: this was sent you by mail in July 2008; you can obtain it from the BSHS administrator.

This is a valuable service especially available to BSHS members.

Can You Communicate HSTM?
If So, Your Society Needs You!

There are two exciting opportunities available on the Communications Co-ordination Committee

Web Editor

Website editor wanted! Do you have good writing and editing skills? An ability to work effectively with others? An interest in communicating the Society's work to its members and the wider world?

We need a new member of the Communications Co-ordination Committee to take charge of the content development of the BSHS website (http://www.bshs.org.uk/) as a major resource for BSHS members and historians of science more generally. The post needs someone with energy, commitment, ideas and a will to make things happen. The Web Editor will have responsibility for a major part of the BSHS communication strategy, and will work closely with CCC and BSHS Council. For further information and informal inquiries, contact the BSHS President, Jeff Hughes, jeff.hughes@manchester.ac.uk.

Communications Secretary

The BSHS is looking for a new Communications secretary to strengthen its relationship with the media. The Communications Secretary is the Society’s point of contact for the media, responsible for fielding general enquiries and for notifying journalists through an online press service of forthcoming BSHS events, books and research findings of the Society’s members. Ideally, applicants should have good contacts within the BSHS, some knowledge of the media and an interest in communicating history of science to the widest possible audience. The appointee will, in the first instance shadow the current Communications Secretary and act as his assistant. Enquiries to the current Communications Secretary are welcomed: please contact media@bshs.org.uk.

Both officers will be members of the BSHS Communication Co-ordination Committee which meets three times a year. The deadline for applications for both positions is 17 July 2009. Please contact Peter C. Kjaergaard at ccc.chair@bshs.org.uk.
BSHS Grant Reports

The BSHS operates a variety of grant schemes — bursaries for Masters degrees, research and special project grants, Butler-Eyles grants for students’ travel to BSHS conferences, and care grants to enable parents to more easily attend BSHS conferences. See www.bshs.org.uk/bshs/grants for details.

Ella Briony Gunson and Rachel Dunn report on how they have been assisted by the Masters degree bursary scheme.

Studying for an MSc at CHSTM, University of Manchester

Often during my undergraduate physics lectures, we would be reminded of Manchester’s illustrious past in the making of modern physics. The lecture theatres themselves in the Schuster Laboratory of Manchester’s Physics Department carry such names as Moseley, Bragg, Blackett and Rutherford, as testament to the University’s past residents that blazon this history. Learning in an institution with such a prestigious past often brought the question of the history of science to the forefront of my mind. After my undergraduate degree I embarked on an MSc in the History of Science, Technology, and Medicine at Manchester’s CHSTM.

I had previously, and rather naively, taken the history of science as akin to a chronology or an itinerary of technological innovation, if you will. But just as any history student will tell you: ‘dates are not important’; far from a chronology, this history sought to place science within a cultural, political, religious, geographical, psychological, sociological setting, identifying the social priorities of that era that sculpt science, technology and medicine. Since science and technology are such pervasive forces in society, to obtain an accurate understanding of the progression of the modern world, it is essential to look at its history.

As an inquisitive person, I had sought to understand the world around us and this was my principle drive to read physics. Science, and its fruits of truth, objectivity, and iPods, I thought would quench an, at times, somewhat existential thirst of mine. But this proved a rather black and white understanding of the world. Responding to and compounding the social views of science, I saw these technological and epistemological tools as both altruistic and a source of pure objectified truth. The Masters course involved largely deconstructing the view that ‘science’ transcends our normal world, challenged the myth of invariance and technological determinism, and presented science as a human event, product and activity in all its manifests. Ultimately, it was about delineating the pedagogic and chronological form of scientific development and instead trying to look at the history of science as one which is the assimilation, reconstruction, re-evaluation of an extended and on going process that is constantly in flux owing to the social, political, cultural and economic factors that are inherent within its development.

The course unsettled much of what I had taken for granted, which I liked to think of as a collision between the Two Cultures in my mind, à la CP Snow. At times it was disconcerting (the concept of ‘social construction of the electron’ did prompt a minor intellectual tantrum within me, which still occasionally echos today) but the almost overwhelming variety of possible routes of inquiry is very exciting. To analagise the coastline paradox, if the history of science is like detailing a map of our development in the past, to what degree of detail is acceptable? The more the scale of a coastline map is reduced, the more detail there is to record; so I ask at what point do historians of science choose to step back and admire the coastline? I finished the course certainly as no cartographer, but felt enlightened by the map reading skills I had picked up along the way.

The anniversary of Darwin this year (150th of publication of the species and the 200th anniversary of his birth) has brought to the forefront not only the importance of the history of science but also its relationship with religion and the classic conflict models that are upheld between the spiritual and scientific world. The work of figures like Richard Dawkins has proved that their interplay is certainly not confined to the history books, and, from the trial of Galileo in the 1630s to the Scopes trial of the 1920s, I have been captivated as to the interplays between science, society and religion. My dissertation involved examining science and religion, case studying the development of Britain’s nuclear deterrent during the 1950s and 60s. Working from primary archival research at Lambeth Palace, it became a discussion on science, state and religion and the interrelationship between these subjects.

Ella Briony Gunson
brown_nosnug@hotmail.com

Report on a MA in the History and Philosophy of Science and Medicine at Durham University

With the support from a BSHS Masters Bursary I was able to complete an MA in the History and Philosophy of Science and Medicine at Durham University. Coming from a scientific rather than a humanities background, the HPSM programme enabled me to extend my understanding of historical and philosophical concepts and develop my skills in interdisciplinary research.

The HPSM programme investigated science and medicine from antiquity to the present day and constantly challenged me to critically evaluate different historiographical interpretations and philosophical concepts. The programme consisted of four taught modules: Research Methods, Philosophical Issues in Science and Medicine, History of Science and History of Medicine followed by a dissertation.

By studying Research Methods I was able to develop a strong foundation on which to base my research, having examined the availability and interpretation of primary sources and methodological concepts. The Philosophical Issues in Science and Medicine module allowed me to develop my understanding of key philosophical theories and to analyse arguments for and against such theories. Through engaging seminars we explored issues such as causation and the beginning and end of life.
Within the History of Medicine we studied the foremost issues of health, medicine and disease, most notably the history of the body, public health and the beginnings of professionalization. While looking at the professionalization of the medical fraternity we examined scientists that were previously unknown to me such as Dr Mary Dixon Jones. Dr Dixon Jones was a leader in gynaecological surgery and, following an enforced retirement from medicine, focused her work on the pathology of disease. Exploring the history of public health we studied the work of, among others, George Rosen, Dorothy Porter and Charles Rosenberg, discussing health and healing in ancient and modern cultures. Reflecting on the 19th century we examined social dislocation and its effect on epidemics. This enabled me to research the consequences of cholera outbreaks in the North East of England and Christiania in Norway during the middle decades of the century that led to subsequent public health reforms.

The course culminated with the completion of a dissertation that helped to develop my research skills, consulting both primary sources and secondary literature. I thoroughly enjoyed the research project as it gave me the opportunity to immerse myself in the early 19th century, examining two of my great scientific heroes, Sir Humphry Davy and Michael Faraday and their time at the Royal Institution. As I spent time prior to my MA as a teacher I was interested in the strategies used to communicate science at the RI with respect to the major objects of its foundation. The title of my dissertation was ‘Communicating Science at the Royal Institution of Great Britain 1799-1830.’ I concentrated my study on the public lectures given by Davy and Faraday, examining the ways in which they communicated verbally and visually with audiences. The fact that the lectures were given by the researchers themselves and the inclusion of inventive demonstrations made them highly successful, turning Davy and Faraday into minor celebrities. I found that the audiences Davy and Faraday lectured to were comprised of members of the middle class who attended to satisfy the thirst for knowledge that existed in the 19th century, not necessarily the audiences Rumford had envisaged benefiting from the Institution.

I would like to thank the BSHS for awarding me the bursary and enabling me to study a subject I love in such depth. Following completion of the HPSM MA I wanted to continue studying the History of Science and have begun a PhD in the Department of Philosophy at Durham University.

Rachel Dunn
University of Durham
r.l.dunn@durham.ac.uk

Religion and the Great Exhibition, 1851

Geoffrey Cantor reports on research carried out with the support of a BSHS grant

Geoffrey Cantor
University of Leeds
G.N.Cantor@leeds.ac.uk

I have long been fascinated by the Great Exhibition of 1851 and recently begun researching it from a rather unusual standpoint. Most histories of the Exhibition portray it as a profoundly secular event dedicated to the display of science, technology, and manufacture. Some, too, tie it to the rise of consumerism or the beginnings of modernity. By contrast, I am asking how the Exhibition might be interpreted from the perspective of religion.

The sources for this project are surprisingly rich. The Exhibition provided the subject matter for numerous sermons; religious organisations issued tracts, Bibles and other religious works for visitors, especially foreigners; and the contemporary religious periodical press overflowed with commentaries on the Exhibition. As well as a wealth of published material, relevant archives are located in Cambridge University Library, SOAS Library, the National Art Library, and the 1851 Commission’s archive at Imperial College, London.

As I was living in York, the grant from the BSHS enabled me to visit London and Cambridge in order to work on the archives and publications of several religious publication societies, especially the Religious Tract Society (RTS), the British and Foreign Bible Society (BFBS), and the Society for Promoting Christian Knowledge.

One significant outcome of this research has been an appreciation of how these predominantly evangelical societies engaged the Exhibition. While the secondary literature makes occasional reference to missionaries distributing tracts to visitors, I have ascertained the immense investment made by these organisations at the time of the Exhibition, in preparing and publishing new works, distributing them, laying on special services, etc. The RTS and BFBS even mounted stands inside the Crystal Palace.

Although there was some religious opposition to the Exhibition, this research also shows several ways in which the scientific and technological artefacts on display were made religiously acceptable. Thus, for example, the exhibits were often portrayed within a providentialist framework, so that a visit to the Exhibition became an experience that transcended the material artefacts themselves.

Many Christians also viewed the Exhibition as manifesting progress; not just progress in science and technology, but also progress in religion and morality. Moreover, not a few writers conceived the Crystal Palace to be an indicator of the immanence of the Second Coming.

These and other responses to the Exhibition emphasize just how deeply its meanings were immersed in contemporary religion. My sincere thanks to the BSHS for enabling me to carry out this basic research on what looks increasingly like a book-length project.

The Great Exhibition at the Crystal Palace, London, 1851

G.N.Cantor@leeds.ac.uk
Outreach and Education Committee
On Tour With Darwin’s Microscope

Kelley Swain describes how an Outreach and Education grant aided her in understanding and disseminating her poetry, and discusses the genre of literature and science.

2009 shares significant links with one of history’s most respected scientists – Charles Darwin. 2009 is the bicentenary of Darwin’s birthday as well as the 150th anniversary of the publication of his magnum opus, On the Origin of Species. Since its publication and immediate bestseller status on 24th November, 1859, Darwin’s work has inspired writers to respond to that shift in perception the work provided. From Thomas Hardy and George Meredith, to the American Transcendentalists, to Simon Armitage and Dorothy Sutton today, poets have bridged ‘the two cultures’ to incorporate science into literature.

I have been privileged to take part in a number of Darwin-related events in reading from my recently published book of poetry, Darwin’s Microscope, which draws in form and subject from Darwin’s life and works, and from what most greatly influenced him as a writer – the natural world. Darwin’s Microscope draws from Vestiges of the Natural History of Creation by Robert Chambers as well as Darwin’s own Voyage of the Beagle, On the Origin of Species, and The Descent of Man. Poems allude to Down House, Darwin’s family life, physical health, and emotional disposition. The ‘microscope’ is both literal, when Darwin looks into droplets of seawater from a red tide, and metaphorical, using that ‘lens’ of wonder, discovery, and excitement with which he viewed the flora, fauna, and geology on his travels and in his own back yard.

One of the most important aspects arising from giving readings from the book is the substance beneath the writing. In creating Darwin’s Microscope, one of my main aims with the book was to impart the wonder and beauty of science to the reader without being didactic, and to balance scientific and poetic integrity. This included me, an English student, taking courses in evolution, zoology, animal behaviour, and geology. This background allowed me to write poems blending geological terminology such as ‘ooids,’ ‘laminae,’ and ‘coquina,’ and to write about cat dissection and whale watching from personal experience.

Another contribution to my work has been the most enjoyable Cambridge Science and Literature Reading Group. The BSHS provided me with a bursary which allowed me to travel from London to Cambridge to attend the SLRG meetings for a term. Sharing the combination of the history of science and literature and science with other enthusiasts is a wonderfully encouraging and inspiring opportunity. I want to thank the BSHS for providing me with the support to take part in the group, and I encourage others to attend.

This background in the history of science and the physical sciences has also allowed me to confidently answer questions at readings. One audience participant wanted to know why I chose to use ‘was spooked’ in a poem about Darwin writing On the Origin of Species. I was able to provide a comprehensive reply, including explaining the development of Darwin writing Origin, coupled with his awareness of prevailing scientific attitudes of the time, especially in relation to transmutation, added to Darwin’s desire to establish himself as a reputable scientist with his barnacle research – and finally Wallace’s semi-concurrent, fever-induced realization of natural selection, the joint readings of their papers at the Linnean Society, and Darwin’s own social connections resulting in the publication and success of his book. The substance behind the readings is extremely important to me as a writer and to provide satisfaction to my listeners.

Approaching a variety of audiences requires respect and enthusiasm. I have read for audiences from 10-year-old school children, elderly couples, academics, and general audiences, and while I do not assume any of these audiences would necessarily know all about Darwin, I try to let the biology shine through in the writing, and to welcome questions as often as possible. I have spoken with English teachers who seek advice on incorporating science into the classroom, science teachers who want to make use of poetry, literature students who want to bring science into their own work and those 10-year-old students, who have been willing to dream up poetic metaphors inspired by zoological specimens.

It has been a strange experiment, taking two things which may be normally intimidating to the uninitiated – biology and poetry – and mixing them, and observing the reaction. Thus far I have greatly enjoyed the results.

In a sense, I am a translator. I am doing my best to translate science into poetry. However, I also feel that science beautifully lends itself to poetry, and that the job of the poet and the job of the scientist are much the same. Both must observe the world closely, intimately, minutely. Both must use the senses, measure, calculate, and write a great deal of description. For both, the final results are rarely what they expect.

A wonderful discussion arose at the recent annual conference of the British Society for Literature and Science on teaching science and literature. One teacher pointed out a distinct response in his students – their interest was piqued in a scientific topic when they had a historical person to whom they could relate. The figure or character was the focus rather than the sweeping historical concept. This has been true in my own writing, from my focus on Charles Darwin and biology for Darwin’s Microscope to my focus on Caroline Herschel and astronomy for my next project. Writing DM has allowed me to learn far more about
biology and about Darwin than I otherwise would have done; just my work on Herschel is currently allowing me to learn heaps about the history of astronomy. Without the incentive of the book, I would not have been likely to look into it. The creative angle has opened the door to the science.

Other resources I would encourage educators or those with a general interest to look at include the JLS, or Journal of Literature and Science, out of the University of Glamorgan. JLS is dedicated to the publication of academic essays on the subject of literature and science, and is peer reviewed. ASLE (The Association for the Study of Literature and the Environment) is a great resource for the more environmental end of science. Many museums of science or natural history run science/literature events; these can provide a wonderful interdisciplinary forum for learning.

A general openness and enthusiasm for interdisciplinary study and generalization are the key ingredients for bridging literature and science and other fields of study. From a young age, students must be inspired and allowed to love and study many subjects. While they specialize in a particular branch of academia, then museums, books, and mentors can bring other subjects into focus. Just like Darwin on his Beagle voyage, when we are exposed to variety, we begin to see connections – leading us into great new ways of seeing the world.

Kelley Swain
kelley.k.swain@gmail.com

Grants for Outreach & Education work, 2009

Do you have a new idea for taking history of science, technology or medicine to non-specialist audiences outside higher education?

If so, you can apply to the BSHS Outreach & Education Committee for a grant to support the costs of your venture. These grants are offered on a competitive basis up to a normal maximum of £100, though applications for larger amounts will be considered in exceptional cases.

The deadline for 2009 applications is June 26, and all receipts for reimbursement must be submitted by early December 2009. To apply, email outreach@bshs.org.uk presenting your case. For further information, see http://www.bshs.org.uk/bshs/outreach/.

Reports of Meetings

British Society for the History of Science Postgraduate Conference

Mike Morwood reports on the conference at the University of Manchester, 6th-9th November

In January in a frosty Manchester the delegates gathered for the annual BSHS Postgraduate Conference, hosted by Manchester University’s Centre for the History of Science, Technology and Medicine (CHSTM). Over 40 delegates attended, representing 23 institutions and several different countries, and as well as historians included geographers and a sociologist. An impressive array of fascinating papers covered many different aspects of the history of science, and offered a great opportunity for us all to hear about our colleagues’ research. Papers ranged from the 16th century to the 21st century, from camouflage to nausea, and from ecology to planetariums. Whilst many papers focused on the 19th century, there was also had a liberal helping of papers on other eras.

Two of the main focuses of the conference were medicine, and cosomology and astronomy. On medicine, Rebecca Whyte
The BSHS skills session on what to do with your thesis after completion, presented by Joe Cain (UCL) and Duncan Wilson (Manchester) was also a great success, with Joe bringing his inimitable energetic style and Duncan reminding us of the need for dogged persistence with post-doc applications!

Over tea and coffee between sessions, and at the enjoyable evening wine reception and conference dinner, we took the opportunity to network and find out more about each other’s work, exchanging useful insights in the process.

Everyone agreed that the conference was a great success. Thanks to the organising committee, the BSHS, and CHSTM. Next year’s conference will be eagerly anticipated!

Mike Moorwood
University of Swansea
m.j.moorwood.229537@swansea.ac.uk

(Cambridge) delivered a paper on compulsory notification of disease in late 19th-century Bolton; Howard Chiang (Princeton) presented on Western anatomy and conceptions of the body in 19th and 20th-century China; Nicholas Whitfield (Cambridge) gave a paper on images of blood donation in wartime London; Rachael Russel (Manchester) presented on nausea and vomiting in 19th century Britain; Alison Montgomery (Durham) on the male skeleton in the late 17th and 18th century; Teri Chettiar (Northwestern) on hypnotism and medicine around 1900; Sherry Gad Erab (Exeter) on healers in 16th to 18th-century Egypt; Alexander Bacopoulos-Viau (Cambridge) on hysteria in medicine and literature in 19th-century France; and Laura Kelly (Galway) on lady medical students in Irish universites around 1900.

On cosmology and astronomy there were also numerous illuminating papers. Jeff Belknap (Cambridge) presented on late-19th-century transit-of-Venus (TOV) observations literature and the introduction of photography in making these observations; Katie Taylor (Cambridge) gave a paper on the development of star maps in the 16th century; and Thad Parsons, III (Oxford) gave an entertaining paper on the chequered history of attempts to build a planetarium at the Science Museum.

Other papers included an exploration of the largely-forgotten 2002 GM controversy in Zambia (Andrew Bowman, Manchester), papers on engineering (Aparajith Ramnath, Imperial College, and Daniel Wilson, Birkbeck College), a paper on Darwinism in 19th-century Denmark (Stine Grumsen, Aarhus), and a paper on patronage of evolutionary biologists in the Dutch East Indies around 1900 (Robert-Jan Wille, Nijmegen).

John Dalton to Joy Division

James Sumner finds new paths for public history of science in the Manchester Histories Festival, 21st March

Beyond science festivals, what?

The annual British Science Festival offers a pattern which has been loosely adapted for local events from Orkney to Brighton. These festivals, of course, present major opportunities for bringing the history of science to a wider audience. They integrate smoothly with university and museum initiatives. They mostly operate on convenient city or campus sites, using existing venues and booking facilities. They draw enthusiastic volunteers, local media coverage, and sometimes (largely because they are seen as economically useful) significant public or commercial sponsorship, at a time when depressingly little else does.

Yet science festivals alone are not enough.

Their audiences tend, inevitably, to be strongly interested in science: a vital constituency, but a minority of the public. School groups are the chief exception, as they will (usually) politely attend what their teachers direct them to. In the National Curriculum, however, the histories of science and, in particular, medicine are associated more strongly with the history syllabus. Only the most enlightened science educators will avoid prioritising ‘core’ science events over ‘optional’ history.

The obvious solution is a history festival. And the challenges are equally obvious. The quest for economic salvation which seems to be the mission of the Department for Innovation, Universities and Skills does not, so far as I can tell, favour strategically expanding the nation’s historical enquiry base. Well before the downturn, industrial concerns which used to engage seriously with museums and academia had begun to withdraw support for their scientific-technical heritage. Want of sponsorship scuppered an annual History Festival in Cambridge. Though there is plainly still an appetite for organised celebrations in the UK – consider the current Darwin anniversary – these tend to be one-off commemorations of specific events.

The Manchester Histories Festival, inaugurated in March, demonstrates a remarkable will to find an alternative model. Operating on a budget that would affront the shoe-string industry, the Festival ingeniously threaded together countless contributions in kind. The greatest of these was full use of Manchester’s splendid Town Hall for the two days into which events were compressed – one for schools, one for the public. Into this space poured the combined efforts of over a hundred schools, academic institutions, community groups, museums, libraries, archives and local societies, offering lectures, demonstrations, guided walks, wall displays, video screenings and information stands. Most of
the effort was voluntary: all events were free.

The Festival was directed by John Pickstone, my colleague at the Centre for the History of Science, Technology and Medicine (CHSTM). With financial support from the Wellcome Trust, and a recent PhD graduate, Tom Lean, closely involved in co-ordination, CHSTM was well represented. Staff and postgrads presented research on the local stories of artificial hips (Julie Anderson), tamoxifen and radiotherapy (Carsten Timmermann, Elizabeth Toon), public health and air pollution (Emma Jones, Gill Mawson) and the regeneration of both wounded tissue and biological research (Duncan Wilson). Michael Worboys provided an overview lecture on Manchester medicine, while schools projects (Mari Lowe, Mike Brown) included the reliably charming topic of epidemic urban cholera.

While the Manchester Science Festival is a science festival for Manchester, the Manchester Histories Festival is a festival for Manchester histories. This imposed some limits: Darwin, lacking local links, was notably absent, and we were unfortunately unable to incorporate current BSHS Outreach work. Yet the Festival’s localism provided the key to a level of genuine public engagement I have not seen at any comparable event. Everyone, it seems, found something they recalled, or had heard recalled, or could otherwise relate to, from gas masks to street plans to the vintage TV camera simulation (wielded by CHSTM postgrad Paul Marshall). Presenters without a direct local focus found ingenious sources of relevance, with displays on early Ferranti radio equipment (Emily Hankin) and the Mancunian sci-fi comic hero Dan Dare (James Farry).

Judging from feedback, these histories fitted seamlessly into a programme encompassing football, immigration, women’s suffrage, architecture, film, Factory Records and the Peterloo Massacre, and featuring such luminaries as Tristram Hunt, Sheila Rowbotham and Michael Wood. Some 4000 people (twice the best projected estimate) attended the public day. With so much going on in a concentrated space, the atmosphere was frenetic. Highlights for me included narrating John Dalton’s early career against heavy competition from a local percussion collective; sheltering behind the CHSTM display stand, frantically folding industrial walking tour pamphlets after the intended day’s stock disappeared in two hours; and wondering why my lecture on Manchester computing was attended by two Edwardian street-urchins.

 purely local history, of course, would be of purely local interest. Yet there is no purely local history. Through tales of atom-splitting, aeronautics, passenger rail, stored-program computers and test-tube babies, explaining the national and global through the local has become second nature in Manchester. Similar approaches underlie public history elsewhere, notably in Liverpool and other maritime centres, and could probably work anywhere. Why not explore your local options?

James Sumner
University of Manchester
james.sumner@manchester.ac.uk

Melanie Keene reports on the event at the Whipple Museum, Cambridge, 12th March

On 12th March Jeff Hughes spoke at the Whipple Museum of the History of Science, Cambridge, on ‘A Function of the Time: The Cavendish Society and their Postprandial Proceedings’. As part of the event the ‘HPS chorus’ (pictured) performed three of the Society’s songs - ‘Ions Mine’, ‘hv’, and ‘Isotopes’ - for the first time since the 1930s.

Melanie Keene
University of Cambridge
mjk32@hermes.cam.ac.uk

Cavendish Society Songs
Reader Contribution
An Economic History of Atomism

Tim Lewis explores two and a half thousand years of atomism

A Google® search for ‘atom’ gives about 58 million different websites. It has been used to describe an era, a theory, a type of energy, an international organisation, a type of bomb, a clock and even a pop group. During the twentieth century it promised a whole new optimistic era of clean unlimited energy, but after 1945 the word became synonymous with death and destruction. But when and where did the idea of atoms begin? What happened to the idea of atomism in its journey through history?

The first atomists, Leucippus and his pupil Democritus lived in the fifth century BCE. They proposed that everything was made of tiny unbreakable particles called atoms that were in continuous motion. They thought that there were atoms of every substance, such as water, milk, honey, bone and coal.

The economy of the ancient Greek world at this time was based on slavery, which was an unskilled labour force. This meant that its economic base was weak and unsustainable, and could not provide the material wealth to support society. If the strength of ancient Greek civilisation was rational thought, its weakness was a lack of appreciation of the role of experiment, observation and technology. This meant that early ideas about the material world including atomism, were not developed beyond pure philosophy. Fortunately, these ideas were recorded by a first century BCE Roman poet called Lucretius and Diogenes, a third century Greek biographer.

From the fourth to the seventh century, intellectual thought in Europe was dominated by Christian philosophy, so that the natural philosophy of the Greeks took a back seat. This was to change dramatically following the Arab conquests of the seventh century and the birth of Islam. The Islamic economy was based on agriculture and farming techniques, which demanded a much higher skill level. As a result, it was more dynamic and provided a stronger economic base for that society.

The culture of early Islamic society supported scientific activity, so that the philosophers-scientists made considerable advances in astronomy, mathematics and alchemy. Arabic translations of ancient Greek science ensured that ideas like atomism were kept alive.

Brilliant polymaths such as Jabir ibn Hayyân (721 - 815), Al- Razi (865 - 925) and Ibn Sina (980 - 1037) turned alchemy into a true science - a precursor of modern chemistry. They rejected the earlier ideas of turning base metals like lead into gold, and saw alchemy as a practical art of distilling useful chemicals like alcohol, acids, perfumes and medicines. They were also meticulous in their procedures and in the recording of their observations. This was the birth of experimental science which had not existed under the Greeks. The idea of atoms was actually perpetuated not by a scientist, but by a Muslim theologian called Al-Ghazali (1058-1111).

After the decline in Arabic science, there was a transfer of the ancient learning to the West in the 13th century. Europe still had a feudal economy with the village as its economic unit. Technical advances in agriculture and manufacturing in medieval Europe resulted in the production of surplus quantities of commodities, which meant that trade between towns could occur and the gradual change from feudalism to capitalism began. The invention of the moveable type printing press by Gutenberg in 1439 would enable the mass circulation and exchange of ideas, which would take off in the 16th century.

In the 17th century, key individuals in the revival and advancement of atomism were Daniel Sennert (1572 - 1637), Johannes Van Helmont (1579 – 1644), Pierre Gassendi (1592 - 1655) and Robert Boyle (1627 – 1691). With the 18th century came advances in laboratory apparatus such as the thermometer by Daniel Gabriel Fahrenheit, the pneumatic trough for the accurate collection of gases by Stephen Hales and the analytical balance by Joseph Black. But it was John Dalton’s (1766 – 1844) 1808 publication New System of Chemical Philosophy that resurrected Democritus’s original hypothesis and combined it with experimental data of his own and other scientists.

Dalton’s originality lay in his ability to link the theoretical entities of hypothetical atoms with real experimental data.

A number of scientists including Avogadro, Gay-Lussac and Berzelius all contributed massively to advancing atomism. But even by the 1850s, atoms were still viewed as a convenient conceptual model with no basis in reality. In 1858, an Italian chemist called Cannizarro revived the work of Dalton and Avogadro in a paper called ‘The New Chemistry’. He presented his work in 1860 at the first international chemistry conference at Karlsruhe in Germany. From the 1860s onwards, atoms were gradually accepted as being real. The invention of the Periodic Table by Meyer in 1864 and Mendeleev in 1869, added more weight to the atomic theory of matter. But chemists had gone as far as they could to convince the world about atoms.

Democritus, the founder of atomism

Physicists found that the atomic model could explain physics laws as well. They discovered that atoms were made of even smaller particles. The final definitive evidence that demonstrated the existence of atoms started with a 1905 paper by Einstein, which mathematically explained osmosis and Brownian motion in terms of atoms and molecules. This was verified experimentally in 1908 by the French physicist Jean Perrin, using an ultra-microscope.

The journey from the atomic hypothesis to the atomic theory took about 2400 years. But its survival as a concept was due to the underlying economy of the period. Without this underlying driving force, technology would not have provided the necessary tools with which to experiment and communicate ideas.

Bibliography

Reviews
Book

But this is not just another popular book on optics and astronomy. Dunn adopts a wider perspective, bringing the non-astronomical uses of the telescope under focus and showing how the image and symbolism of the instrument have been assimilated into erudite and popular culture. In fact, the telescope was not an astronomical instrument in its inception and it did not remain exclusively as a scientific tool after becoming the quintessential device to peer into the heavens. Dunn's approach, covering military applications, bird-watching, or simply people-watching, brings poor cousins like binoculars and spyglasses under the limelight often reserved to their lofty astronomical counterparts. Varied references to literature, cinema, visual arts, advertisement, the press and other domains outside the traditional scientific niches show the telescope in a wide array of cultural meanings: a key to the immensity of the Universe and the little scale of human affairs, a device to peek the lives of others (earthlings and extraterrestrials), an emblem of scientific cold-heartedness, or, what everyone thinks of but are afraid to tell, a phallic symbol.

Conveniently for a book about an observing instrument, it is not only well illustrated, but also, in many aspects, surprisingly illustrated. As the cover suggests, you can expect to see more (and better) here than the traditional gallery of remarkable telescope specimens and the serious faces of their eminent makers and users.

Inevitably, as in any other work of this length and scope, some general statements might sound misleading when brought under a stark scholarly scope. For instance, when Dunn states that in the last quarter of the 20th century astronomical activity became essentially an international endeavour due to the need to fund very expensive telescopes, the historian of astronomy cannot help feeling that the importance of international collaboration in former undertakings – like the expeditions to observe the transits of Venus and extensive sky surveys – is overlooked. But in general Dunn is very competent at managing the delicate balance between rigour and simplicity, and delivers depth and amplitude in the right doses.

This is an ideal book for those looking for an engaging introduction to the history of the most popular scientific instrument, and will provide a pleasant and provoking reading to telescope buffs attached to the 'sky & telescope' paradigm.

Pedro Raposo
University of Oxford
pedro.raposo@stcatz.ox.ac.uk

Opera

Doctor Atomic had its UK premiere in February at the London Coliseum, produced by the English National Opera and directed by Penny Woolcock. Composed by John Adams, with libretto by Peter Sellars, the work debuted in the US in 2005. It takes an ambivalent look at the morality underlying the development of atomic weapons while exploring a tangle of personality, willpower, humanity, and weather.

The opera tells the story of a few days in 1945, as the team working on the Manhattan Project in Los Alamos are preparing for the Trinity Test. Although the male lead is Robert Oppenheimer (Gerald Finley), the opera, unlike the advertising posters, does not tell the story of a Genius Inventor, but rather that of a project manager and the large team he manages, shown as mixed gender. General Leslie Groves (Jonathan Veira) provides the shape of what little plot the opera has, while Edward Teller (Brindley Sherratt) proves the quirkiest and most interesting character of the lot. Groves’ clash with the meteorologist (Rodrick Earle), who must produce good weather for the Test or lose his job or his life for insubordination, structures the second act. Kitty Oppenheimer (Sasha Cooke) is laden...
with the role of Wife and Mother, spending her time pining for her work-loving husband. Indeed, though a major portion of the score is hers, her role exists only in order to provide a female lead. Her nursemaid, a Native American, (Morag Boyle; sung by Meredith Arwady for most of the production) is the second female role. She represents the Tewa people – shown as lab cleaning staff - with her traditional lullaby, sung to the Oppenheimer infant, the performance of which contrasts visually and musically with the work of the military and Manhattan Project scientists. For all the songs of moral ambivalence and the role the Tewas play, the opera focuses on the competing moralities at stake, strong in neither praise nor condemnation; it’s an opera that culminates largely in awe over what has been produced.

Plot, clearly, is not the point of this opera. Indeed, Adams’ work typically deals with characterization rather than with story; even then, Sellars’ dialogue, based heavily on original sources from the period, falls flat, particularly when Groves sings to the audience about his diet diaries in lieu of having a character. The opera begins with a heavy-handed info-dump, a rapid tour around the physics of nuclear bombs, meant to scene-set rather than inform. The ENO’s production of Doctor Atomic is elegantly staged. The set, designed by Julian Crouch and new to this production, is impressive, a versatile moving wall of offices and shadow plays, used to good effect to evoke cubicle farms. Give or take the physical impossibility of sound preceding sight, the bomb is done very effectively, a wall of sound and silence and light evoking the moment of long-anticipated explosion. Costumes were tasteful, with elegant ‘40s outfits; only Kitty Oppenheimer was inevitably doomed to wear red, given her archetypal role. At least she looked good in it.

The singers were all solid, carrying their arias and ensembles with clarity and grace. They were not often tuneful, but that is the fault of the score, one in which the orchestra was more frequently given melodic lines worth listening to than were the singers. One of the few exceptions was Robert Oppenheimer’s striking “Batter my heart, three person’d God”, whose lyrics come from a John Donne poem, heart-wrenchingly performed by Finley. The powerful ensemble piece with lyrics from the Bhagavad Gita, “Your shape stupendous” was also a highlight. The orchestra was generally a greater pleasure to listen to than the tunes with which the singers were stuck, the score a lovely work of soundscape.

Shana Worthen
University of Arkansas, Little Rock, and Canterbury Christ Church University
ssworthen@ualr.edu

Anniversaries, 2011

A fuller list of anniversaries will be available on our website at www.bshs.org.uk/bshs/publications/newsletter. Biographies and data were compiled by Rebekah Higgitt, Catharine Haines and Rosemary Wall.

Nevil Maskelyne (1732-1811)

The bicentenary of the death of the 5th Astronomer Royal will take place in 2011. Maskelyne is perhaps now best-known for his role on the Board of Longitude and his apparent opposition to the clockmaker John Harrison. However, he should also be remembered for his establishment of equipment, staff and a regime at the Royal Observatory in Greenwich that led to the first publication of the Nautical Almanac in 1766. This finally made the lunar distance method a practical means of finding longitude at sea – the raison d’être of the Royal Observatory. Prior to this Maskelyne had been a fellow at Trinity College, Cambridge, and was made a Fellow of the Royal Society in 1758, aged only 25. He was appointed by the Royal Society to observe the 1761 transit of Venus at St Helena and, while frustrated by the weather, the voyage gave him the opportunity to practice the lunar distance method using existing tables. This not only convinced him of the need to produce better tables, but undoubtedly gave him a sound base from which to test Harrison’s timekeepers, which he did on a second voyage, in 1764. While work at Greenwich took up most of Maskelyne’s time, he was able to obtain leave of absence, to conduct an experiment to determine the earth’s density by measuring the deviation of a plumb line produced by the gravitational attraction of the mountain Schiehallion in Perthshire, and by observing stars near the zenith on both the north and south sides of the mountain. For this work he was given the Copley medal in November 1774.

Robert Wilhelm Eberhard Bunsen (1811-1899)

The 200th birthday of Robert Bunsen, the German chemist, will be celebrated in 2011. His name is familiar to every chemistry student because of the improved laboratory burner that he developed with his assistant, Peter Desaga. Bunsen was born in Göttingen, where his father was professor of philology. After attending school in Holzminden, he returned to the University of Göttingen first as a student of chemistry and then as a lecturer. He went on to work at Kassel, Marburg and Breslau, and he was much admired as a teacher as well as for his analytical work in inorganic chemistry. He investigated emission spectra of heated elements and, with Gustav Kirchhoff, discovered caesium and rubidium in the 1860s. Bunsen developed several methods for analysing gases, invented the Bunsen cell as well as the Bunsen burner, and was a pioneer in photochemistry. He undertook important work relating to arsenic, including discovering the use of iron oxide hydrate as a precipitating agent, still the best-known antidote to arsenic poisoning.
<table>
<thead>
<tr>
<th>Viewpoint No. 89</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 years</td>
<td></td>
</tr>
<tr>
<td>Reinhold, Erasmus</td>
<td>1511-1553</td>
</tr>
<tr>
<td>Bacon, Francis</td>
<td>1561-1626</td>
</tr>
<tr>
<td>Helvelius, Johannes</td>
<td>1611-1687</td>
</tr>
<tr>
<td>Pell, John</td>
<td>1611-1685</td>
</tr>
<tr>
<td>450 years</td>
<td></td>
</tr>
<tr>
<td>Robert Boyle publishes Sceptical Chymist</td>
<td>1661</td>
</tr>
<tr>
<td>Molyneux, Thomas</td>
<td>1661-1733</td>
</tr>
<tr>
<td>400 years</td>
<td></td>
</tr>
<tr>
<td>Preston, Charles</td>
<td>1660-1711</td>
</tr>
<tr>
<td>Bassi, Laura</td>
<td>1711-1778</td>
</tr>
<tr>
<td>Brownrigg, William</td>
<td>1711-1800</td>
</tr>
<tr>
<td>Corbyn, Thomas</td>
<td>1711-1791</td>
</tr>
<tr>
<td>Hume, David</td>
<td>1711-1776</td>
</tr>
<tr>
<td>Kinnersley, Ebeneezer</td>
<td>1711-1778</td>
</tr>
<tr>
<td>Wright, Thomas</td>
<td>1711-1786</td>
</tr>
<tr>
<td>350 years</td>
<td></td>
</tr>
<tr>
<td>Hales, Stephen</td>
<td>1677-1761</td>
</tr>
<tr>
<td>Simpson, Thomas</td>
<td>1710-1761</td>
</tr>
<tr>
<td>Abbot, Charles</td>
<td>1761-1817</td>
</tr>
<tr>
<td>300 years</td>
<td></td>
</tr>
<tr>
<td>Maskelyne, Nevil</td>
<td>1732-1811</td>
</tr>
<tr>
<td>Bunson, Robert Wilhelm Eberhard</td>
<td>1811-1899</td>
</tr>
<tr>
<td>Harvey, William Henry</td>
<td>1811-1866</td>
</tr>
<tr>
<td>Le Verrier, Urbain Jean Joseph</td>
<td>1811-1877</td>
</tr>
<tr>
<td>250 years</td>
<td></td>
</tr>
<tr>
<td>150 years</td>
<td></td>
</tr>
<tr>
<td>Using a spectroscope, William Crookes announces a new element, thallium</td>
<td>1861</td>
</tr>
<tr>
<td>Berthier, Pierre</td>
<td>1782-1861</td>
</tr>
<tr>
<td>Berthold, Arnold Adolphe</td>
<td>1803-1861</td>
</tr>
<tr>
<td>Cumming, James</td>
<td>1777-1861</td>
</tr>
<tr>
<td>Dennis, James Blatch Piggott</td>
<td>1815-1861</td>
</tr>
<tr>
<td>Geoffroy Saint-Hilaire, Isidore</td>
<td>1805-1861</td>
</tr>
<tr>
<td>Gray, Henry</td>
<td>c.1825-1861</td>
</tr>
<tr>
<td>Kent, Elizabeth</td>
<td>1790-1861</td>
</tr>
<tr>
<td>Necker, Louis Albert</td>
<td>1786-1861</td>
</tr>
<tr>
<td>Bateson, William</td>
<td>1861-1926</td>
</tr>
<tr>
<td>Dunstan, Wyndham Rowland</td>
<td>1861-1949</td>
</tr>
<tr>
<td>Hopkins, Frederick Gowlands</td>
<td>1861-1947</td>
</tr>
<tr>
<td>Nansen, Fridtjof</td>
<td>1861-1930</td>
</tr>
<tr>
<td>Stevens, Nettie Maria</td>
<td>1861-1912</td>
</tr>
<tr>
<td>Whitehead, Alfred North</td>
<td>1861-1947</td>
</tr>
<tr>
<td>Wright, Almroth</td>
<td>1861-1947</td>
</tr>
<tr>
<td>100 years</td>
<td></td>
</tr>
<tr>
<td>Discovery of polonium by Marie Curie</td>
<td>1911</td>
</tr>
<tr>
<td>Ernest Rutherford publishes his atomic theory</td>
<td>1911</td>
</tr>
<tr>
<td>Galton, Francis</td>
<td>1822-1911</td>
</tr>
<tr>
<td>Gee, Samuel</td>
<td>1839-1911</td>
</tr>
<tr>
<td>Hooker, Joseph Dalton</td>
<td>1817-1911</td>
</tr>
<tr>
<td>Jackson, John Hughlings</td>
<td>1835-1911</td>
</tr>
<tr>
<td>Richards, Ellen</td>
<td>1842-1911</td>
</tr>
<tr>
<td>Barber, Mary</td>
<td>1911-1965</td>
</tr>
<tr>
<td>Crane, Eva</td>
<td>1911-2007</td>
</tr>
<tr>
<td>50 years</td>
<td></td>
</tr>
<tr>
<td>Jung, Carl Gustav</td>
<td>1875-1961</td>
</tr>
<tr>
<td>Schrodinger, Erwin</td>
<td>1887-1961</td>
</tr>
</tbody>
</table>
HPSTM People:
The Questionnaire

In 2009, BSHS member Doron Swade was awarded an MBE for Services to the History of Computing. Most famous for masterminding the construction of a Babbage calculating engine to original 19th-century designs, this museum professional is the leading authority on Charles Babbage.

Who or what first turned you towards the History of Science, Technology and Medicine (HSTM)?
The failure of technological determinism. I was curator of computing at the Science Museum and was trying to account for why Charles Babbage's calculating engines were unfinished. Almost every historical account maintained that the reasons for Babbage's failures were limitations of 19th-century mechanical engineering. Once this form of determinism was discounted (it is readily rebutted) there was an explanatory vacuum. I needed a discourse rich enough to do justice to a more nuanced account. So I turned to history, quite late as it happens, and did a PhD on the utility of calculating engines.

What has been your best career moment?
It was a private moment. 1991 was the bicentennial year of Charles Babbage's birth. I had taken on a personal and professional mission to build the first complete Babbage calculating engine to original 19th-century designs. Starting in 1985 I had six years to do it. There was no guarantee of success. No one knew whether the designs were sound. One afternoon in November 1991, with no fanfare and only me and the two engineers present, we ran the first error-free calculation. I walked up the stairs to my office and wrote in my day diary, 'Engine works'. It was a moment of conscious awareness. I knew we had done something.

And worst?
Prince Charles was due to open an exhibition on telecommunications at the Science Museum in March 1983. I was then an electronics design engineer responsible for developing working exhibits. The deadline was desperate. We had had no sleep for four nights and forty-two of the forty-three exhibits were working on the opening day. I believed that I could finish the last one in the ten minutes before the Prince was due. I left the line of staff waiting to be presented and disappeared behind a back-projection screen to wire up the last device. The Prince arrived early. My shadow crossed the screen as he approached. It was the first exhibit he tried and the only one that didn't work.

Which historical person would you most like to meet?
It would have to be Charles Babbage. There is so much about his work that remains unexplained.

What's your best dinner-table HSTM story?
What comes to mind is a lecture in 1972 or 3 by Jacques Monod in Cambridge where I was doing HPS. His Chance and Necessity (1971) had caused a sensation and rocked the role of classical determinism in evolutionary biology. The lecture hall was packed to the rafters. Monod argued for randomness as the source of mutation and posited selection as an evolutionary filter. He was given a rough time. He seemed taken aback by the hostility to randomness as part of a causal account of where we are. He finished pleadingly and asked, 'why can't we just accept our luck?'

What should every 16-year-old know about HSTM?
That science and technology are defining signatures of our culture and that to find meaning in the present we must seek to understand history; that history helps identify critical branch points and prompts us to contemplate how otherwise the world might be.

If you did not work in HSTM, what other career might you choose?
A craftsman of some kind, working with tools and materials.

What are your favourite HSTM books?
My favourite genre is biography. The three-way relationship between biographer, reader and subject provides a wonderful landscape.
In Memoriam

Alfred Rupert Hall (1920-2009) and Marie Boas Hall (1919-2009)

With the deaths of Rupert and Marie Hall within three weeks of each other in February, history of science has lost two of its founding figures in the post 1945 period.

Rupert was born near Stoke-on-Trent and read history at Christ’s College, Cambridge, although this was interrupted by service in the signals corps of the Eighth Army from 1941 to 1945. After graduating he wrote his PhD on ballistics in the 17th century. In 1950 he became the first curator of the Whipple Museum in Cambridge and junior lecturer. In this latter role he delivered a course of lectures on ‘The Scientific Revolution’ which he turned into the influential book of the same title published in 1954. It was this book which popularised the scientific revolution as a term of art and was the inspiration for Thomas Kuhn’s later work.

In 1951 he met, at Kuhn’s suggestion, Marie Boas who was then in England to study the Boyle papers. She was the daughter of New England academics and had studied chemistry at Radcliffe College. Following American entry into the war in 1941, Marie undertook various pieces of war work relating to radar and after the end of the war she was employed by the Radiation Laboratory under Henry Guerlac to write its history. Her coming under Guerlac’s influence was a crucial event of her career. On his return to Cornell, she followed him as a research student and wrote her thesis on Robert Boyle.

Rupert and Marie married in 1959 and that year both moved to teach at UCLA and shortly afterwards moved to Indiana University. In 1963 at the invitation of Patrick Linstead, Rector of Imperial College, they founded its Department of History of Science and Technology, where they remained until retirement in 1980; Hall then directed the history of medicine programme at the Wellcome Trust for four years.

At Imperial College they were highly productive of students (both PhDs and on the MSc courses) and of their own scholarship, notably the 13 volumes of the correspondence of Henry Oldenburg and the last three volumes of Isaac Newton’s (which Rupert undertook with Laura Tilling). Rupert played a major role in the history of science community, being President of the BSHS (1966-1968) and the International Academy of the History of Science (1977-1981) and serving for many years on the National Committee for the History of Science. In retirement Rupert wrote a series of important books, including on the Leibniz-Newton controversy and biographies of Henry More and of Newton whilst Marie wrote a biography of Oldenburg and three book length studies on various aspects of the Royal Society.

They were a devoted couple, hardly ever apart, and while in some ways it was appropriate that they should die so close together and have a joint funeral, they are sadly missed by their students and colleagues.

Frank A.J.L. James
The Royal Institution
FJames@ri.ac.uk

The Times obituaries can be found at:
http://www.timesonline.co.uk/tol/comment/obituaries/article5852722.ece
http://www.timesonline.co.uk/tol/comment/obituaries/article5940482.ece

Listings

Call for Papers - Anthology

Evolution studies in Britain, 1918-1940

Scholars working in the area of history of evolutionary studies in Britain between WW1 and WW2 are invited to participate in a publishing project on the subject. The goal is to create an anthology of peer-reviewed scholarly papers that both add substantively to the topic and relate the subject to historiographical themes in the broader history of science community.

The aim is to follow this timeline: 15 Sep 2009 deadline for paper submissions, Winter 2009-2010 review and editorial work; Spring 2010 publication. During the review process, participants will be encouraged to comment constructively on other manuscripts in the volume. Final papers should be in the 8-12K word range, notes inclusive. Precise format to be described later.

Send proposals, provisional titles, and queries to Joe Cain, Department of Science and Technology Studies, University College London, J.Cain@ucl.ac.uk.

Festival of Science

History of Science Section events at the British Science Association, University of Surrey, Guildford, 5-10 September 2009

We are pleased to welcome Professor James Moore as Section President for the 2009 Festival.

Events include Presidential Session: Does Darwin have a future?; ‘The Tables Turned’, with the BSHS Outreach and Education Committee, funded by the Wellcome Trust (see http://www.thetablesturned.blogspot.com/ for details/updates); William Wordsworth at the British Association, in association with the British Society for Literature and Science; and more.

For updates on dates, times and speakers see http://bahistoryofscience.wordpress.com/.
The British Journal for the History of Science

The June issue of BJHS will include the following, plus reviews:

- Michael Wintroub, ‘The Heavens Inscribed: the instrumental poetry of the Virgin in early modern France’
- Simon Thode, ‘Bones and words in 1870s New Zealand: the moa-hunter debate through actor networks’
- Dániel Margócsy, ‘Advertising cadavers in the republic of letters: anatomical publications in the early modern Netherlands’
- Elsa Mota, Paulo Crawford and Ana Simões, ‘Einstein in Portugal: Eddington’s expedition to Principe and the reactions of Portuguese astronomers (1917–25)’

www.bshs.org.uk/bjhs

Viewpoint: the Newsletter of the BSHS

Contributions
All contributions and correspondence should be sent to the Editor, Dr Rosemary Wall, Florence Nightingale School of Nursing and Midwifery, King’s College London, James Clerk Maxwell Building, 57 Waterloo Road, London, SE1 8WA; newsletter@bshs.org.uk. Electronic communication is preferred. Viewpoint is issued three times a year – in February, June and October. The next issue will be in October 2009 and the deadline for copy is 17th August 2009. Advance notice of contributions to be submitted are very welcome.

Circulation
Enquiries about circulation should be sent to the BSHS Executive Secretary, British Society for the History of Science, PO Box 3401, Norwich, NR7 7JF. Viewpoint is free to BSHS members and is priced £10.00 a year (three issues) for non-members.

Advertisements
The Editor will consider advertisements regarding new appointments but, as a general rule, other advertisements are not printed in this publication. However, for an appropriate charge, leaflets advertising suitable events, publications etc. can be sent out with Viewpoint, subject to size and postage restrictions: full details are available from the BSHS Executive Secretary; execsec@bshs.org.uk.

Copyright
© The British Society for the History of Science Ltd. 2009. Extracts not exceeding the equivalent of a normal paragraph may be reproduced elsewhere providing acknowledgement is given to Viewpoint: the Newsletter of the British Society for the History of Science.

Disclaimer
Any views expressed in Viewpoint are those of the Editor or named contributor and not those of the council or membership of the BSHS. Every effort is made to provide accurate information, but no responsibility is accepted by the Editor or Council for omissions or errors.

The British Society for the History of Science

All enquiries to the BSHS Executive Secretary, British Society for the History of Science, PO Box 3401, Norwich, NR7 7JF, UK; Tel: +44 (0)1603 516236; office@bshs.org.uk.

You can join online, paying by credit or debit card at www.bshs.org.uk/bshs/join_the_bshs. Alternatively you can download a direct debit mandate form.

The British Society for the History of Science is registered as a Company Limited by Guarantee, No. 562208, and is also a Registered Charity, No. 258854. Registered Office: PO Box 3401, Norwich, NR7 7JF, UK.